Strictly non-proportional geodesically equivalent metrics have h top ( g ) = 0

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting and gluing constructions for geodesically equivalent pseudo-Riemannian metrics

Two metrics g and ḡ are geodesically equivalent, if they share the same (unparameterized) geodesics. We introduce two constructions that allow one to reduce many natural problems related to geodesically equivalent metrics, such as the classification of local normal forms and the Lie problem (the description of projective vector fields), to the case when the (1, 1)−tensor Gj := g ik ḡkj has one ...

متن کامل

Splitting and Gluing Lemmas for Geodesically Equivalent Pseudo-riemannian Metrics

Two metrics g and ḡ are geodesically equivalent if they share the same (unparameterized) geodesics. We introduce two constructions that allow one to reduce many natural problems related to geodesically equivalent metrics, such as the classification of local normal forms and the Lie problem (the description of projective vector fields), to the case when the (1, 1)−tensor Gj := g ik ḡkj has one r...

متن کامل

1 0 Ju n 20 08 Geodesically complete Lorentzian metrics on some homogeneous 3 manifolds

We show that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non-unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentz 3-manifolds with non compact (local) i...

متن کامل

Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with n...

متن کامل

Cocompact Cat(0) Spaces Are Almost Geodesically Complete

Let M be a Hadamard manifold, that is, a complete simply connected riemannian manifold with non-positive sectional curvatures. Then every geodesic segment α : [0, a] → M from α(0) to α(a) can be extended to a geodesic ray α : [0,∞) → M . We say then that the Hadamard manifold M is geodesically complete. Note that, in this case, all geodesic rays are proper maps. CAT(0) spaces are generalization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2006

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385705000283